Hamilton–Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints
نویسندگان
چکیده
منابع مشابه
Hamilton–jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints
We extend Hamilton–Jacobi theory to Lagrange–Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton–Jacobi equation as the Dirac–Hamilton–Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the th...
متن کاملFundamental Principles of Lagrangian Dynamics: Mechanical Systems with Non-ideal, Holonomic, and Nonholonomic Constraints
This paper deals with the foundations of analytical dynamics. It obtains the explicit equations of motion for mechanical systems that are subjected to non-ideal holonomic and nonholonomic equality constraints. It provides an easy incorporation of such non-ideal constraints into the framework of Lagrangian dynamics. It bases its approach on a fundamental principle that includes non-ideal constra...
متن کامل"Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reductions9
In this paper we establish necessary conditions for optimal control using the ideas of Lagrangian reduction in the sense of reduction under a symmetry group. The techniques developed here are designed for Lagrangian mechanical control systems with symmetry. The benefit of such an approach is that it makes use of the special structure of the system, espcially its symmetry structure and thus it l...
متن کاملOptimal control for holonomic and Pfaffian nonholonomic systems
Holonomic and Pfaffian nonholonomic systems are dynamical systems whose generalized coordinates and velocities are subject to smooth constraints. These systems are usually described by second order differential equations of motion and algebraic equations of constraint. We present an optimal control formulation for these systems that utilizes the multiplier rule to append both the equations of m...
متن کاملGeometric Mechanics, Lagrangian Reduction, and Nonholonomic Systems
This paper surveys selected recent progress in geometric mechanics, focussing on Lagrangian reduction and gives some new applications to nonholonomic systems, that is, mechanical systems with constraints typified by rolling without slipping. Reduction theory for mechanical systems with symmetry has its roots in the classical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poinca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2012
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4736733